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5.0  BAYESIAN REGRESSION ANALYSIS

5.1 Bayesian Regression Methodology

5.1. 1 Introduction

Predictive equations are very important tools for  the pavement management systems.

However, databases to support the developments and updating of these models are lacking. These

databases are often inadequate in sample size, noisy, or incomplete. Conventional statistical

modeling tools,  such as classical regression analysis, may have limited success in these

applications (Kajner et al. 1996).  A promising solution lies in the use of Bayesian regression,

which explicitly allows experts to be used to supplement poor quality data (Kwaeski and Nickeson

1997).  Bayesian regression methodology was adopted by the Canadian Strategic Highway

Research Program (C-SHRP) for the Canadian Long Term Pavement Performance (C-LTPP)

monitoring program.   Nesbit and  Sparks  (1990) discussed the complete rationale for employing

the Bayesian  approach for the C-LTPP program in the report "Design of Long Term Pavement

Monitoring System for the Canadian Strategic Highway Research  Program."

5.1. 2 An Overview of the Bayesian Regression Approach

In its simplest sense, Bayesian regression is a specialized adaption of the Bayes'  Theorem

involving development of multivariate regression models which explicitly consider two disparate

sources of information:

1. A  prior  information,  i.e.  information that is known prior  to an experiment,  and

2. Experimental data, i. e. information that is derived from an experiment.

The interpretation and conclusion drawn from the experimental data can be quite different

depending on what  other evidence exists on the subject  at hand. However,  this difference in
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interpretation does not simply mean biasing a result. Interpretation of results using Bayes'

Theorem is a mathematically consistent way to interpret new evidence/information (Kwaeski and

Nickeson 1997).

The Bayesian statistical method for model development, represented in Figure 5.1,  is to

systematically combine prior knowledge and experience with data to improve the predictive

relationship.  The Bayes approach calculates a meaningful and credible answer without relying

solely on a small database. In doing so,  the Bayes technique allows decisions to be made in the

short term while improvements to the data,  judgement and the model continue to be made

(Kwaeski and Nickeson 1997).

Figure 5.1  The Bayesian Statistical Approach (Kwaeski and Nickeson 1997)

In assembling information for Bayesian regression,  data collected in the traditional manner

is supplemented with prior knowledge. This approach is summarized in the Figure 5. 1. The so-

called ' prior'  may be drawn from expert judgement, " old" data sets, or  knowledge that is

generally accepted in the field. Expert judgement can also be encoded by polling experts and

asking them to estimate the value of the dependent variable for a combination of contributory

variables. Once collected, the experts' observations are interpreted similar  to the traditional data.
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5.1. 3 Bayesian Regression Software

Two Bayesian regression software packages,  B-STAT and XLBayes, were developed by

VEMAX Management, Inc. , Canada, under contract to C-SHRP.  B-STAT provides an EXCEL

spreadsheet interface to a FORTRAN based Bayesian regression program,  PC-BRAP. XLBayes,

on the other hand, is a much faster Bayesian regression program based entirely in the EXCEL

environment (Kwaeski and Nickeson 1997). The analysis features and numerical results of the two

programs are identical. XLBayes was selected for this research because it is relatively

straightforward and faster.

5.2 Bayesian Regression to Predict the Decrease in PSE Values

The Bayesian regression analysis  using the XLBayes software requires prior data to be

combined with the sample data to obtain the desired posteriors. The prior data can be drawn from

the expert judgement, old data sets or knowledge that is generally accepted in the field. For this

research project, the data set for a number of pavements from Districts I and  IV for 1993 and 1994

were used as prior data, and the data for 1995 were used as the sample data. The same functional

form and transformations of  the independent variables as in the classical regression were used.

5.2.1 Developing Prior and Assembling Sample Data

The prior can be derived either subjectively using expert judgement or objectively based on

existing data or models. Both approaches  require that the prior information be put into either an N-

prior or G-prior format. Both the N-prior or G-prior summarize a linear regression which represents

the prior state of knowledge in the Bayesian regression calculation. The prior includes the

coefficients of the linear regression equation along with  the corresponding regression statistics such

as the variance of the regression coefficients. The regression statistics indicate the certainty of the

prior and are used to weigh the balance between the prior and the data in the Bayesian regression

calculation. A brief overview of the information required to define the  N-prior or a G-prior is

provided in Table 5.1 (Kwaeski and Nickeson 1997). The G-prior option is typically used when the
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coefficient means have been estimated directly by the experts. The G-prior derives the

variance/covariance matrix for the coefficient means based on a set of independent variable data. The

G-prior factor is used to increase or decrease the influence of the prior in the calculation of the

posterior. The G-prior factor is denoted by g. A typical value for g is 1. This essentially gives the

prior variance/covariance matrix weight equal  to that of the experimental data. The greater the value

of g, the more  influence the prior will have on the posterior.  Since the pseudo/prior data used in this

research were not derived from expert opinion only, the N-prior option of Bayesian regression was

used in this analysis.

Table 5.1 Required Prior Information (After Kwaeski and Nickeson 1997)

Prior Information Required for N-prior Required for G-prior

Means vector T T

Variance/Covariance Matrix T -

G-prior data set - T

G-prior factor - T

Residual variance T T

Degrees of freedom T T

5.2.2 Results of Bayesian Regression and Selected Posterior Models

The classical regression results using pseudo data, development of the N-prior and the

posterior regression coefficients for the FDBIT and PDBIT pavements have been reported in detail

by Chowdhury (1998). The selected posterior models using N-prior Bayesian regression analysis are

shown below.

FDBIT Pavements: The selected models for FDBIT pavements are :

Distress Level 1

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 5.89*DL1 

(5.1)
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 Distress Level 2

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 6.04*DL2 

(5.2)

For Distress Level 3

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 6.47*DL3 

(5.3)

PDBIT Pavements:  The selected models for PDBIT pavements are :

Distress Level 1 

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 0.392*DL1 (5.4)

Distress Level 2

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 0.881*DL2 (5.5)

Distress Level 3

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 1.974*DL3 (5.6)

where, )PSE= Predicted decrease in PSE value,
AGE= Age of the pavement since the last rehabilitation action (in years),
TH = AC layer thickness (in inches),
PSE= PSE value assigned to the pavement immediately after the last action,
)SN= Decrease in structural number, and
DLi= Distress level due to transverse cracking ( i = 1, 2, 3).

5.3 Model Evaluation

The purpose of evaluating the model results is to draw conclusions about the Bayesian

posterior results. Evaluation emphasizes comparisons between the data, the prior, and the posterior.

These comparisons may be used for additional iterations for analysis later on. The  statistical

performance of a classical regression model is typically measured by evaluating the standard error

(Se), coefficient of determination (R2), F-statistic, and t-statistic. In Bayesian regression, only Se and

t-statistic can be evaluated. Neither R2 nor the F-statistic  can be calculated because they rely on the
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experimental data which does not exist for the posterior results (Kaweski et al 1997).

5.3.1 Data, Prior, and Posterior PDF Plots

An important output of XLBayes is the PDF (Probability Density Function) plots for each

coefficient in the model. These plots graphically compare the distribution of the same coefficient

when based on the data alone, the prior alone, or the Bayesian posterior. Figures 5.2 through 5.14

show the PDF plots for all coefficients in the models developed in this study.

Under the assumptions of  both classical linear regression and the Bayesian regressions, the

model coefficients follow t-distribution. The width of the bell shaped curve shows the confidence

in the estimating coefficients. The PDF plots of all coefficients reveal the fact that the probability

distribution for the posterior estimate is 'tighter' than either the prior or the data. This is intuitively

reasonable as the prior and the data reinforce each other with similar estimates of the coefficients.

Bayesian  regression models can always be updated by inserting more data in the model which

makes the posterior more and more definitive. 

5.3.2 t-Statistic

The t-test is used to determine whether a regression coefficient is significantly different from

zero. The t-value for a regression coefficient is calculated by dividing the mean of the regression

coefficient by its standard deviation:

t = bi / Fbi

The null hypothesis in this test is :

H0 : bn = 0

which is tested against the alternative hypothesis :

H1 : bn … 0
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Figure 5.2 PDF Plot for Age for FDBIT Pavements



49

Figure 5.3 PDF Plot for Thickness for FDBIT Pavements
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Figure 5.4 PDF Plot for Decrease in Structural Number for FDBIT Pavements
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Figure 5.5 PDF Plot for PSE for FDBIT Pavements
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Figure 5.6 PDF Plot for Distress Level 1 for FDBIT Pavements
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Figure 5.7 PDF Plot for Distress Level 2 for FDBIT Pavements
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Figure 5.8 PDF Plot for Distress Level 3 for FDBIT Pavements
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Figure 5.9 PDF Plot for Age for PDBIT Pavements
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Figure 5.10 PDF Plot for Decrease in Structural Number for PDBIT Pavements
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Figure 5.11 PDF Plot for PSE for PDBIT Pavements
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Figure  5.12 PDF Plot for Distress Level 1 for PDBIT Pavements
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Figure  5.13 PDF Plot for Distress Level 2 for PDBIT Pavements
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Figure 5.14 PDF Plot for Distress Level 3 for PDBIT Pavements
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At 5% level of significance, where the number of degrees of freedom is very large (i.e., the

t distribution is approximately the same as the normal distribution), the critical value of t is ± 1.96.

If the t-value is greater than 1.96 or less -1.96,  the null hypothesis  is rejected and it is accepted that

the estimate of  bn is statistically significant. The higher the value of t, the more is the confidence

about its value and significance. If  the t-value is between 1.96 and -1.96,  the null hypothesis is

accepted and it is concluded that the estimate of  bn is not statistically significant. The values

calculated for the coefficients may only be different from zero due to chance. If the regression

coefficients in the prior and posterior are not statistically significant it may be useful to re-run the

analysis after excluding the variable in question. If the standard error term does not increase

significantly, the excluded variable may not be a statistically significant contributory variable.

The ideal result is for the data and prior to reinforce each other, resulting in a posterior

coefficient that has a smaller standard error than either one individually. This is not always the case,

however, and the posterior may in fact have a larger standard error. Irrespective of how much the

variance has changed, it is desirable that the coefficients in the posterior model all be statistically

significant.

The t-statistics and the standard deviations of different coefficients are presented in  Table

5.8. It is observed that the t-statistics of all selected variables are outside the range of 1.96 and -1.96

which means that the null hypothesis is rejected in all cases. Thus, the variables used in the models

are significant at 5% level of significance.

5.3.3 Standard Error of the Residuals (Se)

The standard error of the residuals, Se, is a basic measure of regression model performance.

The standard error (or standard deviation) of the residuals is simply the square root of the residual

variance, Se
2. The lower the Se

 , the closer the predictions made by the model are to the actual 
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Table 5.2 Standard Deviation and t-Statistic of the Posterior Coefficients 

Pavement type Variable Std. Deviation t-value Res. Var. (Se
2)

FDBIT (Age)1.5 0.034 3.620 0.329

Thickness 0.041 2.547

Exp[ª(SN)] 4.240 -2.200

PSE 0.107 3.486

DL1 2.979 1.98

DL2 2.876 2.101

DL3 2.424 2.670

PDBIT (Age)1.5 0.008 2.349 0.203

Exp[ª(SN)] 0.500 -3.746

PSE 0.038 7.850

DL1 0.196 1.990

DL2 0.383 2.301

DL3 0.466 4.234

observations of the dependent variable, and therefore, the better the model.

Under the assumptions of regression, the residual has a mean of zero and is normally

distributed. Thus the confidence interval for the forecasts made by the model can be calculated using

a table of areas under the standard normal curve. For example, 95% confidence interval for a forecast

corresponds to the mean forecast plus or minus 1.96 times the standard deviation of the residual.

Therefore, the selected models will predict the )(PSE) values within ±1.1 units of actual ratings for

FDBIT and ±0.88 units for PDBIT pavements with 95% confidence.


